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ABSTRACT

A typical semiconductor-based optoelectronic device, such as a diode laser, consists of

three subsystems: an optical field, an electron-hole plasma (EHP), and a host crystal lat-

tice. The physics of such a device involves the interplay of optical, electrical and thermal

processes. A proper description of such a device requires that all three processes are treated

on equal footing and in a self-consistent fashion. Furthermore, since a semiconductor laser

has intrinsic spatial inhomogeneity, such a self-consistency naturally leads to a set of partial

differential equations in space and time.

There is a significant lacking of research interest and results on the transport aspects of

optical devices in the literature with only a few exceptions[i-3]. Even the most important

carrier diffusion coefficient has not been properly derived and studied so far for optically

excited plasma, while most of the work adopted results from electronics community where

heavily doped semiconductors with mainly one type of carriers are dealt with. The corre-

sponding transport equation for plasma ener_" or temperature has received even less atten-

tion. In this talk we describe our recent results [4-6] on such a self-consistent derivation of

temperature and carrier-density diffusion equations coupled with the lasing process.

Starting from the microscopic semiconductor Bloch equations (SBEs) including the Boltz-

mann transport terms in the distribution function equations for electrons and holes, we

derived a closed set of diffusion equations for carrier densities and temperatures with self-

consistent coupling to Maxwell's equation and to an effective optical polarization equation.

The coherent many-body effects are included within the screened Hartree-Fock approxima-

tion, while scatterings are treated within the second Born approximation including both

the in- and out-scatterings. Microscopic expressions for electron-hole (e-h) and carrier-LO

(c-LO) phonon scatterings are directly used to derive the momentum and energy relaxation

rates. These rates expressed as functions of temperatures and densities lead to microscopic



expressionsfor self-andmutual-diffusioncoefficientsin thecoupleddensity-temperaturedif-

fusionequations.Approximationsfor reducingthegeneraltwo-componentdescriptionof the

electron-holeplasma(EHP) to asingle-componentonearediscussed.In particular,weshow

that a specialsingle-componentreductionis possiblewhene-hscatteringdominatesover

c-LO phononscattering. The ambipolardiffusionapproximationis alsodiscussedand we

showthat the ambipolardiffusioncoefficientsareindependentofe-hscattering,eventhough

the diffusioncoefficientsof individualcomponentsdependsensitivelyon the e-hscattering

rates.Ourdiscussionsleadto newperspectivesinto therolesplayedin thesingIe-component

reductionby the electron-holecorrelationin momentumspaceinducedby scatteringsand

the electron-holecorrelationin real spacevia internal static electricalfield. Finally, the

theoryis completedby couplingthe diffusionequationsto the lattice temperatureequation

andto theeffectiveopticalpolarizationwhich in turn couplesto the laserfield.

Theequationsderivedaboveareimplementedin variouslimiting casesto a typical diode

laserto study theconsequencesof nonlineardiffusionandthe crossdiffusiontermson laser

behavior,especiallythe dynamicbehaviorof a diode laserunder modulation. Detailed

resultswill bepresentedby comparingwith thestandardrateequationresults.

References

[1]H. Haugand S.W.Koch,Phys.Rev.,A 39, 1887(1989).

[2] O. Hess and T. Kuhn, Phys. Rev.,A 54, 3347(1996).

[3] J.R. Meyer, Phys. Rev., B 21, 1554 (1980).

[4] C.Z. Ning and J.Li, Phys. Rev. B, 65, 201305(2002).

[5] J.Li and C.Z. Ning, Phys. Rev. A (to appear).

[6] J.Li and C.Z. Ning, Phsy. Rev. A, (to appear).



Microscopic Foundation and Simulation of
Coupled Carrier-Temperature Diffusion

Equations in Semiconductor Lasers

J.Li and C.Z.Ning

Center of Nanotechnology (CtYT)

NASA Ames Research Center

Moffett Field, CA 94035

Errail: cnina_mail.ar_.n asa .Qov

http://www.nas.nasa.gQv/~cning

I

°TL,NE.....• Introduction

II. Equations of Motion

III. Moment Equations

II. Equations of Motion:
I Density Matrix Equations for Inhomog, Semiconductor IKuhn. z9_)

3
• Hamiltonian for a 2-band 2D e-h Nasma

, 2m,

• The Heiserlberg Equation for the bitfnear operator combinations

: _ =_;o_,_._, or _;_,o_,

i ,_LDensity Matrix Equations (continued)

I .....
•;_1 Non-diagonal density matrix elements in momentum representation

• Non-diagonal density matz_x elements _ "mixed" (W-_ner)

representation [integro_diffe_ent_al equations, (Kuhn, 1994)]

K =(k ÷k')/2; q=k-k'

Fourier t_nsform w.r.t the relative momentum



_LDensity Matrix Equations (continued)
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• Taylor expansion of Ifle defls_ matrices:

/, ,_R,)°_:-_:<-r.-aI? k.°--I%,_R>
- _ ,,..o n! m!_, aR) L aKd

with

(-rre""=,'_---_e"" (-k)'em'r = (+,)" _. e_ ....

• Final equations of motion

# To first c.der of TaY'_" e_af_on

,_ ]gr,_re e0cp)_ot s_l_al varlabon of polarization variabk_s

_LMaxwell- Bloch- Boltzmann- Poisson Eqns.

a ,'+.v,_'-v,," =-v,_, ._-o].v,. = _'_+a." ._

n" • he(k. r) :dIs_i_l)t_tlon _n(:_ol_ (_ = Ch)

plp(_r):lr_'_r_ pO_m_ on

_.E(RO:op_ Fleid; _o,:t_kOmund pola_atl on

p.._-_,[U'pIk, r)+*_]:ac_e mlm_m pola.....

I
i

Definitions and Expressions in MBBP Equations

i

Carrier-Carrierand Carrier-LOPhonon

.._LScattering Terms in SBEs

- ,_ ,' _ \ 2 2)
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_LFeatures of Our Approach

_ Coherent part Contains both exchange intera_lon and

term in the bandgap renormalization

• Full microscopic second order scattering terms treated without

assumincj I .. in the Boltzmann

equation

• CanceMOon d e-h scat_r';ng tern_ for arnbJpo_ar diffusion

coef_nt_• Detailed expression for all d_'fusion coefficients in _nns of

disb'ib_n func'd_s

! III. Moment Equations
(Hydrodynamic Equations)

• Moment _VI_ and current ,1.= of nth order:

with ]_'=l_k ..... ! forn=0,l, and2

• DerivaUon of moment equations

Or apply operate" 4_'_F._(.--) on both skis of _rnann equabon

_L

• The "hierarchy" problem

•_. Order-n currents am related to order-(n+l) morne_t_

_, Exis_nce of potaHzaUon variable p(k,r) leads t_ terms such as

!Z_'_<_>s,• .an,_:_<_..._,+<k:_>

• Cutting-off= the hierarchy

• _, [,_ot_o W or ignoring nm-diago_al tensor compo_en_ of 2 _ moment

_, Quasi-equilibrium w_th a non-zero-drift rnomen_m k_

• Moment-current relations up to 2 n_ o/_er

kinearizing scattering terms a M (r _ _-- 1_ _ (r]_ {

3



The Hydrodynamic Equations

• Explicit, closed form hydrodynamic equations derived microscopically
for e-h sys_m

• Describe e-h dynamics in o_cally-excit_ semicond_ such as in
THz generation, ptlob0concluctJveswitches, and la_ral photode_ctors
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